1. Galmés, M. ?.et al. 2021. Combined theoretical and experimental study to unravel the differences in promiscuous amidase activity of two nonhomologous enzymesACS Catalysis 11(14), pp. 8635-8644. (10.1021/acscatal.1c02150)
  2. Williams, T. al. 2021. Transferability of N-terminal mutations of pyrrolysyl-tRNA synthetase in one species to that in another species on unnatural amino acid incorporation efficiencyAmino Acids 53, pp. 89-96. (10.1007/s00726-020-02927-z)
  3. Tang, T. M. S. L. and Luk, L. Y. P. 2021. Asparaginyl endopeptidases: enzymology, applications and limitationsOrganic and Biomolecular Chemistry (10.1039/D1OB00608H)
  4. Adesina, A. S., Luk, L. Y. P. and Allemann, R. K. 2021. Cryo‐kinetics reveal dynamic effects on the chemistry of human dihydrofolate reductaseChemBioChem (10.1002/cbic.202100017)
  5. Hayes, H. C., Luk, L. Y. P. and Tsai, Y. 2021. Approaches for peptide and protein cyclisationOrganic and Biomolecular Chemistry (10.1039/D1OB00411E)
  6. Santi, al. 2021. Transfer hydrogenations catalyzed by streptavidin-hosted secondary amine organocatalystChemical Communications 57(15), pp. 1919-1922. (10.1039/D0CC08142F)
  7. Sophie R Thomas, Riccardo Bonisignore, Jorge S Escudero, Samual M Meier-Menches, Christopher Brown, Mike Wolf, Giampaolo Barone, Louis YP Luk*, Angela Casini*. Exploring the chemoselectivity towards cysteine arylation by cyclometalated Au(III) compounds: new mechanistic insights. ChemBioChem 2020 (10.1002/cbic.202000262)
  8. Nicolò Santi, Louis C Morrill, Louis YP Luk*. Streptavidin-hosted Organocatalytic Aldol Addition. Molecules2020, 25, 2457. (10.3390/molecules25102457)
  9. Simon TM Tang, Davide Cardella, Alexander J Lander, Xuefei Li, Jorge S Escudero, Yu-Hsuan Tsai, Louis YP Luk*. Use of an asparaginyl endopeptidase for chemo-enzymatic peptide and protein labeling. Chem. Sci.2020, 11, 5881. (10.1039/D0SC02023K)
  10. Nödling, A. al. 2020. Enabling protein-hosted organocatalytic transformationsRSC Advances 10(27), pp. 16147-16161. (10.1039/D0RA01526A)
  11. Nödling, al. 2020. Cyanine dye mediated mitochondrial targeting enhances the anti-cancer activity of small-molecule cargoesChemical Communications (10.1039/C9CC07931A)
  12. Zheng, al. 2020. Condensation of 2-((Alkylthio)(aryl)methylene)malononitrile with 1,2-Aminothiol as a novel bioorthogonal reaction for site-specific protein modification and peptide cyclizationJournal of the American Chemical Society 142(11), pp. 5097-5103. (10.1021/jacs.9b11875)
  13. Mills, E. al. 2020. Applying switchable Cas9 variants to in vivo gene editing for therapeutic applicationsCell Biology and Toxicology 36, pp. 17-29. (10.1007/s10565-019-09488-2)
  14. Meier-Menches, S. al. 2020. Comparative biological evaluation and G-quadruplex interaction studies of two new families of organometallic gold(I) complexes featuring N-heterocyclic carbene and alkynyl ligandsJournal of Inorganic Biochemistry 202, article number: 110844. (10.1016/j.jinorgbio.2019.110844)
  15. Allemann, R. al. 2019. Heavy enzymes and the rational redesign of protein catalystsChemBioChem 20(22), pp. 2807-2812. (10.1002/cbic.201900134)
  16. Angelastro, al. 2019. Loss of hyperconjugative effects drives hydride transfer during dihydrofolate reductase catalysisACS Catalysis 9(11), pp. 10343-10349. (10.1021/acscatal.9b02839)
  17. Mills, E. al. 2019. Applying switchable Cas9 variants to in vivo gene editing for therapeutic applicationsCell Biology and Toxicology (10.1007/s10565-019-09488-2)
  18. Nodling, A. al. 2019. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cellsEssays in Biochemistry 63(2), pp. 237-266. (10.1042/EBC20180042)
  19. Scott, A. al. 2019. Crystal structure and biophysical analysis of furfural detoxifying aldehyde reductase from clostridium beijerinkiiApplied and Environmental Microbiology, pp. -. (10.1128/AEM.00978-19)
  20. Patel, S. al. 2019. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell linesScientific Reports 9(1), 6298. (10.1038/s41598-019-42456-8)
  21. Williams TL, et al. 2018. Carbapenems as water soluble organocatalystsWellcome Open Res. 3, 107 (doi: 10.12688/wellcomeopenres.14721.1)
  22. Nodling, A. al. 2018. Reactivity and selectivity of iminium organocatalysis improved by a protein hostAngewandte Chemie International Edition 57(38), pp. 12478-12482. (10.1002/anie.201806850pdfAccess the recommendation on F1000Prime
  23. Suzuki, al. 2018. Switchable genome editing via genetic code expansionScientific Reports 8(1), 10051. (10.1038/s41598-018-28178-3pdf
  24. Allemann, al. 2018. Isotope substitution of promiscuous alcohol dehydrogenase reveals origin of substrate preference in transition stateAngewandte Chemie International Edition 57(12), pp. 3128-3131. (10.1002/anie.201712826pdf
  25. Świderek, al. 2018. Reaction mechanism of organocatalytic Michael addition of nitromethane to cinnamaldehyde: a case study on catalyst regeneration and solvent effectsJournal of Physical Chemistry A 122(1), pp. 451-459. (10.1021/acs.jpca.7b11803pdf
  26. Liao, al. 2017. Acetylome of acinetobacter baumannii SK17 reveals a highly-conserved modification of histone-like protein HUFrontiers in Molecular Biosciences 4, article number: 77. (10.3389/fmolb.2017.00077pdf
  27. Wilkins, al. 2017. Reactions of biologically inspired hydride sources with B(C6F5)3Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375(2101), article number: 20170009. (10.1098/rsta.2017.0009pdf
  28. Angelastro, al. 2017. Chemoenzymatic assembly of isotopically labeled folatesJournal of the American Chemical Society 139(37), pp. 13047-13054. (10.1021/jacs.7b06358pdf
  29. Lai, al. 2017. Site-specific His/Asp phosphoproteomic analysis of prokaryotes reveals putative targets for drug resistanceBMC Microbiology 17(1), article number: 123. (10.1186/s12866-017-1034-2pdf
  30. Loveridge, al. 2017. Reduction of folate by dihydrofolate reductase from thermotoga maritimaBiochemistry 56(13), pp. 1879-1886. (10.1021/acs.biochem.6b01268pdf
  31. Angelastro, al. 2016. A versatile disulfide-driven recycling system for NADP+ with high cofactor turnover numberACS Catalysis 7, pp. 1025-1029. (10.1021/acscatal.6b03061pdf
  32. Castillo, al. 2016. β1 subunit-induced structural rearrangements of the Ca2+- and voltage-activated (BK) channelProceedings of the National Academy of Sciences of the United States of America 113(23), pp. E3231-E3239. (10.1073/pnas.1606381113pdf
  33. Ruiz-Pernía, al. 2016. Minimization of dynamic effects in the evolution of dihydrofolate reductaseChemical Science 7(5), pp. 3248-3255. (10.1039/C5SC04209Gpdf
  34. Luk, al. 2015. Chemical ligation and isotope labeling to locate dynamic effects during catalysis by dihydrofolate reductaseAngewandte Chemie – International Edition 54(31), pp. 9016-9020. (10.1002/anie.201503968pdf
  35. Luk, L. Y. P., Loveridge, E. J. and Allemann, R. K. 2015. Protein motions and dynamic effects in enzyme catalysisPhysical Chemistry Chemical Physics 17, pp. 30817-30827. (10.1039/C5CP00794Apdf
  36. Luk, al. 2014. Protein isotope effects in dihydrofolate reductase from Geo-bacillus stearothermophilus show entropic-enthalpic com-pensatory effects on the rate constantJournal of the American Chemical Society 136(49), pp. 17317-17323., article number: 141114165738006. (10.1021/ja5102536pdf
  37. Luk, L. Y. P., Loveridge, E. J. and Allemann, R. K. 2014. Different dynamical effects in mesophilic and hyperthermophilic dihydrofolate reductasesJournal of the American Chemical Society 136(19), pp. 6862-6865. (10.1021/ja502673h)pdf
  38. Guo, al. 2014. Thermal adaptation of dihydrofolate reductase from the moderate thermophile geobacillus stearothermophilusBiochemistry 53(17), pp. 2855-2863. (10.1021/bi500238qpdf
  39. Behiry, al. 2014. Role of the occluded conformation in bacterial dihydrofolate reductasesBiochemistry 53(29), pp. 4761-4768. (10.1021/bi500507vpdf
  40. Ruiz-Pernia, al. 2013. Increased dynamic effects in a catalytically compromised variant of Escherichia coli dihydrofolate reductaseJournal of the American Chemical Society 135(49), pp. 18689-18696. (10.1021/ja410519h)pdf
  41. Luk, al. 2013. Unraveling the role of protein dynamics in dihydrofolate reductase catalysisProceedings of the National Academy of Sciences of the United States of America 110(41), pp. 16344-16349. (10.1073/pnas.1312437110)
  42. Guo, al. 2013. Effect of dimerization on dihydrofolate reductase catalysisBiochemistry 52(22), pp. 3881-3887. (10.1021/bi4005073)
  43. Mahmoodi, N.; Qi, Q.; Luk, L.Y.P.; Tanner, M.E.; Rearrangements in the Mechanisms of the Indole Alkaloid Prenyltransferases, Pure Appl. Chem., 85, 1935-1948 (2013). DOI: 10.1351/PAC-CON-13-02-02
  44. Luk, L. Y. P., Qian, Q. and Tanner, M. E. 2011. A cope rearrangement in the reaction catalyzed by dimethylallyltryptophan synthase?Journal of the American Chemical Society 133(32), pp. 12342-12345. (10.1021/ja2034969)
  45. Luk, L. Y. P. and Tanner, M. E. 2009. Mechanism of dimethylallyltryptophan synthase: Evidence for a dimethylallyl cation intermediate in an aromatic prenyltransferase reactionJournal of the American Chemical Society 131(39), pp. 13932-13933. (10.1021/ja906485u)
  46. Luk, al. 2007. Mechanistic studies on norcoclaurine synthase of benzylisoquinoline alkaloid biosynthesis:  An enzymatic Pictet-Spengler reactionBiochemistry 46(35), pp. 10153-10161. (10.1021/bi700752n)

Book Sections

  1. Scott, A. F., Luk, L. Y. P. and Allemann, R. K. 2017. Chemical ligation and isotope labeling to locate dynamic effects. In: Imperiali, B. ed. Methods in Enzymology, Vol. 596.  Elsevier, pp. 23-41 ,(10.1016/bs.mie.2017.06.040)
  2. Allemann, R. K., Loveridge, E. and Luk, L. Y. P. 2015. Protein motions, dynamic effects and thermal stability in dihydrofolate reductase from the hyperthermophile thermotoga maritima. In: Olivares-Quiroz, L., Guzmán-López, O. and Jardón-Valadez, H. E. eds. Physical Biology of Proteins and Peptides: Theory, Experiment, and Simulation.   Springer International Publishing, pp. 99-113 ,(10.1007/978-3-319-21687-4_6)