1. Williams TL, et al. 2018. Carbapenems as water soluble organocatalystsWellcome Open Res. 3, 107 (doi: 10.12688/wellcomeopenres.14721.1)
  2. Nodling, A. al. 2018. Reactivity and selectivity of iminium organocatalysis improved by a protein hostAngewandte Chemie International Edition 57(38), pp. 12478-12482. (10.1002/anie.201806850pdfAccess the recommendation on F1000Prime
  3. Suzuki, al. 2018. Switchable genome editing via genetic code expansionScientific Reports 8(1), 10051. (10.1038/s41598-018-28178-3pdf
  4. Allemann, al. 2018. Isotope substitution of promiscuous alcohol dehydrogenase reveals origin of substrate preference in transition stateAngewandte Chemie International Edition 57(12), pp. 3128-3131. (10.1002/anie.201712826pdf
  5. Świderek, al. 2018. Reaction mechanism of organocatalytic Michael addition of nitromethane to cinnamaldehyde: a case study on catalyst regeneration and solvent effectsJournal of Physical Chemistry A 122(1), pp. 451-459. (10.1021/acs.jpca.7b11803pdf
  6. Liao, al. 2017. Acetylome of acinetobacter baumannii SK17 reveals a highly-conserved modification of histone-like protein HUFrontiers in Molecular Biosciences 4, article number: 77. (10.3389/fmolb.2017.00077pdf
  7. Wilkins, al. 2017. Reactions of biologically inspired hydride sources with B(C6F5)3Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375(2101), article number: 20170009. (10.1098/rsta.2017.0009pdf
  8. Angelastro, al. 2017. Chemoenzymatic assembly of isotopically labeled folatesJournal of the American Chemical Society 139(37), pp. 13047-13054. (10.1021/jacs.7b06358pdf
  9. Lai, al. 2017. Site-specific His/Asp phosphoproteomic analysis of prokaryotes reveals putative targets for drug resistanceBMC Microbiology 17(1), article number: 123. (10.1186/s12866-017-1034-2pdf
  10. Loveridge, al. 2017. Reduction of folate by dihydrofolate reductase from thermotoga maritimaBiochemistry 56(13), pp. 1879-1886. (10.1021/acs.biochem.6b01268pdf
  11. Angelastro, al. 2016. A versatile disulfide-driven recycling system for NADP+ with high cofactor turnover numberACS Catalysis 7, pp. 1025-1029. (10.1021/acscatal.6b03061pdf
  12. Castillo, al. 2016. β1 subunit-induced structural rearrangements of the Ca2+- and voltage-activated (BK) channelProceedings of the National Academy of Sciences of the United States of America 113(23), pp. E3231-E3239. (10.1073/pnas.1606381113pdf
  13. Ruiz-Pernía, al. 2016. Minimization of dynamic effects in the evolution of dihydrofolate reductaseChemical Science 7(5), pp. 3248-3255. (10.1039/C5SC04209Gpdf
  14. Luk, al. 2015. Chemical ligation and isotope labeling to locate dynamic effects during catalysis by dihydrofolate reductaseAngewandte Chemie – International Edition 54(31), pp. 9016-9020. (10.1002/anie.201503968pdf
  15. Luk, L. Y. P., Loveridge, E. J. and Allemann, R. K. 2015. Protein motions and dynamic effects in enzyme catalysisPhysical Chemistry Chemical Physics 17, pp. 30817-30827. (10.1039/C5CP00794Apdf
  16. Luk, al. 2014. Protein isotope effects in dihydrofolate reductase from Geo-bacillus stearothermophilus show entropic-enthalpic com-pensatory effects on the rate constantJournal of the American Chemical Society 136(49), pp. 17317-17323., article number: 141114165738006. (10.1021/ja5102536pdf
  17. Luk, L. Y. P., Loveridge, E. J. and Allemann, R. K. 2014. Different dynamical effects in mesophilic and hyperthermophilic dihydrofolate reductasesJournal of the American Chemical Society 136(19), pp. 6862-6865. (10.1021/ja502673h)pdf
  18. Guo, al. 2014. Thermal adaptation of dihydrofolate reductase from the moderate thermophile geobacillus stearothermophilusBiochemistry 53(17), pp. 2855-2863. (10.1021/bi500238qpdf
  19. Behiry, al. 2014. Role of the occluded conformation in bacterial dihydrofolate reductasesBiochemistry 53(29), pp. 4761-4768. (10.1021/bi500507vpdf
  20. Ruiz-Pernia, al. 2013. Increased dynamic effects in a catalytically compromised variant of Escherichia coli dihydrofolate reductaseJournal of the American Chemical Society 135(49), pp. 18689-18696. (10.1021/ja410519h)pdf
  21. Luk, al. 2013. Unraveling the role of protein dynamics in dihydrofolate reductase catalysisProceedings of the National Academy of Sciences of the United States of America 110(41), pp. 16344-16349. (10.1073/pnas.1312437110)
  22. Guo, al. 2013. Effect of dimerization on dihydrofolate reductase catalysisBiochemistry 52(22), pp. 3881-3887. (10.1021/bi4005073)
  23. Mahmoodi, N.; Qi, Q.; Luk, L.Y.P.; Tanner, M.E.; Rearrangements in the Mechanisms of the Indole Alkaloid Prenyltransferases, Pure Appl. Chem., 85, 1935-1948 (2013). DOI: 10.1351/PAC-CON-13-02-02
  24. Luk, L. Y. P., Qian, Q. and Tanner, M. E. 2011. A cope rearrangement in the reaction catalyzed by dimethylallyltryptophan synthase?Journal of the American Chemical Society 133(32), pp. 12342-12345. (10.1021/ja2034969)
  25. Luk, L. Y. P. and Tanner, M. E. 2009. Mechanism of dimethylallyltryptophan synthase: Evidence for a dimethylallyl cation intermediate in an aromatic prenyltransferase reactionJournal of the American Chemical Society 131(39), pp. 13932-13933. (10.1021/ja906485u)
  26. Luk, al. 2007. Mechanistic studies on norcoclaurine synthase of benzylisoquinoline alkaloid biosynthesis:  An enzymatic Pictet-Spengler reactionBiochemistry 46(35), pp. 10153-10161. (10.1021/bi700752n)

Book Sections

  1. Scott, A. F., Luk, L. Y. P. and Allemann, R. K. 2017. Chemical ligation and isotope labeling to locate dynamic effects. In: Imperiali, B. ed. Methods in Enzymology, Vol. 596.  Elsevier, pp. 23-41 ,(10.1016/bs.mie.2017.06.040)
  2. Allemann, R. K., Loveridge, E. and Luk, L. Y. P. 2015. Protein motions, dynamic effects and thermal stability in dihydrofolate reductase from the hyperthermophile thermotoga maritima. In: Olivares-Quiroz, L., Guzmán-López, O. and Jardón-Valadez, H. E. eds. Physical Biology of Proteins and Peptides: Theory, Experiment, and Simulation.   Springer International Publishing, pp. 99-113 ,(10.1007/978-3-319-21687-4_6)